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A B S T R A C T   

Context: Abnormal serum calcium concentrations affect the heart and may alter the electrocardiogram (ECG), but 
the detection of hypocalcemia and hypercalcemia (collectively dyscalcemia) relies on blood laboratory tests 
requiring turnaround time. 
Objective: The study aimed to develop a bloodless artificial intelligence (AI)-enabled (ECG) method to rapidly 
detect dyscalcemia and analyze its possible utility for outcome prediction. 
Methods: This study collected 86,731 development, 15,611 tuning, 11,105 internal validation, and 8401 external 
validation ECGs from electronic medical records with at least 1 ECG associated with an albumin-adjusted calcium 
(aCa) value within 4 h. The main outcomes were to assess the accuracy of AI-ECG to predict aCa and follow up 
these patients for all-cause mortality, new-onset acute myocardial infraction (AMI), and new-onset heart failure 
(HF) to validate the ability of AI-ECG-aCa for previvor identification. 
Results: ECG-aCa had mean absolute errors (MAE) of 0.78/0.98 mg/dL and achieved an area under receiver 
operating characteristic curves (AUCs) 0.9219/0.8447 and 0.8948/0.7723 to detect severe hypercalcemia and 
hypocalcemia in the internal/external validation sets, respectively. Although < 20 % variance of ECG-aCa could 
be explained by traditional ECG features, the ECG-aCa was found to be associated with more complications. 
Patients with ECG-hypercalcemia but initially normal aCa were found to have a higher risk of subsequent all- 
cause mortality [hazard ratio (HR): 2.05, 95 % conference interval (CI): 1.55–2.70], new-onset AMI (HR: 
2.88, 95 % CI: 1.72–4.83), and new-onset HF (HR: 2.02, 95 % CI: 1.38–2.97) in the internal validation set, which 
were also seen in external validation. 
Conclusion: The AI-ECG-aCa may help detecting severe dyscalcemia for early diagnosis and ECG-hypercalcemia 
also has prognostic value for clinical outcomes (all-cause mortality and new-onset AMI and HF).   
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1. Introduction 

Calcium is an important cation involved in several biological activ
ities and neuromuscular functions Its homeostasis is maintained by the 
gastrointestinal tract (absorption), bone (resorption), and kidneys 
(reabsorption) and regulated by several factors including parathyroid 
hormone, vitamin D, and various cytokines etc. Calcium disturbance or 
dysregulation leads to abnormal serum calcium concentration (hypo
calcemia or hypercalcemia, collectively dyscalcemia), commonly 
encountered electrolyte imbalances in clinical practice. It has been re
ported that the incidence of hypocalcemia and hypercalcemia in hos
pitalized patients ranges from 20 to 40 % and 3–7 % [1], respectively. 
Dyscalcemia may cause diverse clinical symptoms and signs, especially 
neuromuscular features, and are associated with higher morbidity and 
mortality [2]. To date, the detection of hypocalcemia and hypercalcemia 
relies on laboratory measurement and associated turnaround times. 
Therefore, the early diagnosis of dyscalcemia with timely management 
is still challenging. 

Both hypocalcemia and hypercalcemia significantly affect cardiac 
physiology and activity. Electrocardiography (ECG) may detect these 
cardiac electrical changes and is a prompt and non-invasive bedside 
tool. The reported ECG findings associated with hypocalcemia include 
ST segment and QT prolongation [3], ST-elevation [4], AV block [5], 
and intraventricular conduction delay [6]. The ECG findings associated 
with hypercalcemia include shortened ST segment and QT interval [7], 
Osborn J-wave [8], widespread T-wave inversion [9], and Torsades de 
pointes [10]. Although these ECG changes have been well emphasized, 
even experienced clinicians frequently do not notice all these changes. 

Artificial intelligence (AI) techniques based on deep learning models 
(DLM) have been shown to achieve human-level performance [11] and 
effectively detect cardiac diseases in large, annotated ECG datasets 
[12–17]. Using a large data-driven DLM, we have successfully developed 
the AI-ECG12Net to rapidly detect dyskalemias in the ED [18]. Building 
on this platform, we sought to expand detection to the early diagnosis of 
hypocalcemia and hypercalcemia. Moreover, AI-enabled ECG (AI-ECG) 
systems have been demonstrated to identify previvors of cardiovascular 
diseases (CVD) [19]. Recently, we have also demonstrated that ECG- 
dyskalemia (normal potassium by lab but dyskalemia by AI-ECG) may 
serve as a biomarker for worse physical conditions and an independent 
predictor for future adverse outcomes [20]. Similarly, we sought to 
investigate the additional value of AI-identified dyscalcemia for 
prdicting clinical outcomes (all-cause mortality, new-onset acute 

myocardial infarction [AMI] and new-onset heart failure [HF]). 
The aim of this study was to build a DLM for dyscalcemia detection, 

validate its performance in two independent hospitals, and to examine 
the previvors identified by ECG-dyscalcemia. Our AI-ECG dyscalcemia 
platform demonstrated accurate performance in detecting severe dys
calcemia and was a prognostic indicator of subsequent all-cause mor
tality, new-onset AMI, and new-onset HF in patients with ECG- 
hypercalcemia but initial normocalcemia. 

2. Material and methods 

2.1. Data source and population 

The dataset generation is summarized in Fig. 1. We did a retro
spective study from two hospitals of the Tri-Service General Hospital 
system in Taipei, Taiwan between January 1, 2010 and September 30, 
2021. The academic medical center in NeiHu District (hospital A) pro
vided the samples for DLM training and internal validation, and the 
community hospital in Zhongzheng District (hospital B) was used for 
external validation. We collected patients who had at least one pair of 
ECG and albumin-adjusted calcium (aCa) measurement within 4 h, and 
there were 69,627 and 8,401 patients from hospitals A and B, 
respectively. 

The development set included 52,528 patients who first visited 
hospital A between January 2017 and September 2021 and provided 
86,731 ECGs for DLM training. The tuning set included 5,994 patients 
who first visited hospital A between January 2016 and December 2016 
and provided 15,611 ECGs to guide the training process and determine 
cut-off points. The internal validation set included 11,105 patients who 
first visited hospital A before December 2015 and it was the primary 
source of accuracy tests of the DLM. We only used each patient’s first 
record to avoid data dependency and ensure statistical independence. 
Using the same criteria for hospital B, we identified 8,401 patients as the 
external validation set. 

2.2. Data collection 

This study used the standard 12-lead ECG collected from Philips 
machines (PH080A), which involved 5,000 voltage–time trace signals 
for each lead (500 Hz sampling frequency for 10 s). Because the sensi
tivity for the diagnosis of dyscalcemia using serum total calcium (tCa) 
was low [21] and the number of serum ionized calcium measurement 

Fig. 1. Development, tuning, internal validation, and external validation set generation and ECG labeling of albumin-adjusted calcium. Schematic of the 
data set creation and analysis strategy, which was devised to ensure robust and reliable data sets for training, validating, and testing of the network. Once a patient’s 
data were placed in one of the data sets, that individual’s data were used only in that set, avoiding ‘cross-contamination’ among the training, validation, and test data 
sets. The details of the flow chart and how each of the data sets was used are described in the Methods. 
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was limited, aCa was used as the target indicator in this study. The aCa 
was calculated using the formula: aCa = tCa + [4 − Alb] × 0.8, where 
tCa is the serum concentration of tCa in mg/dL and Alb is the serum 
concentration of albumin in g/dL. We divided the data into seven cat
egories based on aCa concentrations: severe hypocalcemia (aCa ≤ 6.5), 
moderate hypocalcemia (6.5 < aCa ≤ 7.5), mild hypocalcemia (7.5 <
aCa ≤ 8.5), normal (8.5 < aCa < 10.5), mild hypercalcemia (10.5 ≤ aCa 
< 11.5), moderate hypercalcemia (11.5 ≤ aCa < 12.5), and severe hy
percalcemia (12.5 ≤ aCa). 

Patients’ characteristics and associated co-morbid conditions were 
collected using an electronic health record system. We used Interna
tional Classification of Diseases (ICD), Ninth Revision and Tenth Revi
sion to define diabetes mellitus (DM), hypertension (HTN), 
hyperlipidemia (HLP), chronic kidney disease (CKD), AMI, stroke (STK), 
coronary artery disease (CAD), HF, atrial fibrillation (Afib), and chronic 
obstruction pulmonary disease (COPD) as previously reported [22]. The 
time nearest laboratory data were assigned to each ECG records, 
including renal and liver function profiles, complete blood cell count, 
electrolytes, blood pH, bicarbonate (HCO3), glucose (GLU), creatine 
kinase (CK), C-reactive protein (CRP), troponin I (TnI), NT-pro-B type 
natriuretic peptide (pBNP), and D-dimer. Missing data were imputed 
using multiple imputations in multivariate analysis [23]. 

2.3. Investigation of clinical outcomes 

Hypercalcemia may cause ST-segment elevation mimicking AMI 
[24–26] and AI-ECG has already been validated to identify previvors of 
HF [27]. Considering the association between dyscalcemia and mortal
ity [2], we therefore selected all-cause mortality, new-onset AMI, and 
new-onset HF as endpoints to explore the ramifications of false positive 
findings in patients with lab-normal calcium levels [19]. For mortality, 
the survival time was calculated with reference to the date of the ECG 
record and we only included patients with followup hospital visits. Pa
tient status (dead/alive) was captured through the electronic medical 
record. Moreover, data for alive visits were censored at the patient’s last 
known hospital alive encounter to limit bias from incomplete records. 
For new-onset AMI and HF, patients with prior history of these diseases 
were excluded. The new-onset events were defined as the ICD records 
after the reference date and data were similarly censored to the patient’s 
last hospital visit. There were 9,097, 7,300, and 6,781 at-risk cases in the 
internal validation set for all-cause mortality, new-onset AMI, and new- 
onset HF, respectively with median followup (in years, interquartile 
range, IQR) of 2.84 (0.44–5.96), 3.39 (1.10–6.15), and 3.48 (1.18–6.22) 
years, respectively. The longest follow up for every endpoint was just 
over of 10 years. The external validation set included 6,839, 6,242, and 
5,428 at risk cases with median follow up (IQR) of 1.45 (0.22–3.86), 
1.76 (0.39–4.07), and 1.69 (0.35–4.02) years, respectively. The longest 
follow up for every endpoint, again, was around 10 years. 

2.4. Deep learning model 

We developed a DLM using raw 12-lead ECG traces signals as input to 
estimate actual aCa, and the predicted aCa was called ECG-aCa in this 
study. We used the architecture of the ECG12Net [18] with a value range 
of ECG-aCa from 5 to 13. This value range was based on the number of 
samples (<200 out of range) and clinical relevance. Since physicians are 
most interested in symptomatic hypocalcemia (aCa ≤ 7) or symptomatic 
hypercalcemia (aCa ≤ 12), a value range of ECG-aCa from 5 to 13 mg/dl 
may be acceptable in clinical practice. The category-wise encoding 
technology and training details have been previously reported [22]. 
During the training process, we randomly cropped a length of 4,096 
sequences as input. During the inference stage, two overlapping lengths 
of 4,096 sequences from the start and the end were used to generate 
predictions and averaged to give the final prediction. An oversampling 
process was implemented to ensure that rare cases of extreme aCa values 
were adequately recognized, which was based on weights computed on 

the prevalence of 20 equidistant intervals in the development cohort 
[22]. In summary, the DLM will provide aCa prediction using the raw 
ECG voltage–time traces of a 5,000 by 12 matrix. 

Since the characteristics of “black box” in DLM [28], we tried to used 
known ECG features to establish the components of DLM. The known 
ECG features included the 8 quantitative ECG measures and 31 most 
popular diagnostic pattern classes. The 8 ECG measurements included 
heart rate, PR interval, QRS duration, QT interval, correct QT interval, P 
wave axis, RS wave axis, and T wave axis. Data for these variables were 
88–100 % complete, and missing values were imputed using multiple 
imputations [23]. The 31 clinical diagnosis patterns were parsed from 
the structured findings statements based on the key phrases that are 
standard within the Philips system, which included abnormal T wave, 
atrial fibrillation, atrial flutter, atrial premature complex, complete AV 
block, complete left bundle branch block, complete right bundle branch 
block, first degree AV block, incomplete left bundle branch block, 
incomplete right bundle branch block, ischemia/infarction, junctional 
rhythm, left anterior fascicular block, left atrial enlargement, left axis 
deviation, left posterior fascicular block, left ventricular hypertrophy, 
low QRS voltage, pacemaker rhythm, prolonged QT interval, right atrial 
enlargement, right ventricular hypertrophy, second degree AV block, 
sinus bradycardia, sinus pause, sinus rhythm, sinus tachycardia, supra
ventricular tachycardia, ventricular premature complex, ventricular 
tachycardia, and Wolff-Parkinson-White syndrome. We used above 
variables to predict DLM-aCa using XGB classifier in tuning set, and the 
final XGB classifier only included the features could significantly 
improve the predictability. This analysis may increase the transparency 
of DLM prediction. 

2.5. Statistical analysis and model performance assessment 

All statistical analyses were completed in R version 3.4.4 and the 
significance level was set as p < 0.05. All analyses were conducted in 
both internal and external validation sets. The mean difference, Pearson 
correlation coefficients, and mean absolute errors were used for 
comparing the ECG-aCa and actual aCa. Receiver operating character
istic (ROC) curve and its area under curves (AUC) were the primary 
analyses for evaluating the diagnostic value of ECG-aCa for identifying 
mild to severe dyscalcemia. For the follow-up analysis, Kaplan-Meier 
(KM) curves were generated to evaluate the prognostic utility of ECG- 
aCa in patients with an initially normal measured aCa (8.5 < aCa <
10.5). Cox proportional hazard models were also fitted to calculate the 
grouping hazard ratios (HRs) and corresponding 95 % conference in
tervals (95 % CI). The C-index was the global indicator to quantify the 
contribution of continuous ECG-aCa to each cardiovascular event. 

3. Results 

3.1. Patients’ characteristics 

Patients’ characteristics are shown in Table 1. In the internal/ 
external validation sets, there were 20/27 (0.2 %/0.3 %), 68/77 (0.6 
%/0.9 %), and 1,937/1,344 (17.4 %/16.0 %) patients with severe, 
moderate, and mild hypocalcemia, respectively. For hypercalcemia, 13/ 
20 (0.1 %/0.2 %) severe, 22/41 (0.2 %/0.5 %) moderate, and 123/143 
(1.1 %/1.7 %) mild cases in the internal/external validation sets, 
respectively. The patients in the internal validation set were 57.7 % male 
with mean age 55.1 ± 18.3 years old, which was significantly younger 
than the external validation set (53.9 % male, mean age 69.5 ± 17.2 
years old). Corresponding to the older population, a higher prevalence 
of all disease histories was noted in the external validation set. The 
population heterogeneity between the two hospitals served to better 
evaluate the possible real-world performance of the system. 
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3.2. The comparison between ECG-aCa and actual aCa 

Fig. 2A shows the scatter plot between ECG-aCa and actual aCa in the 
internal and external validation sets. The mean differences with stan
dard deviations were − 0.12(1.01) and − 0.27(1.22) in the internal and 
external validation sets, respectively, which corresponded to mean ab
solute errors of 0.78 and 0.98 mg/dL. The results demonstrated a slight 
overestimation of ECG-aCa by the DLM, which might be due to the lower 
prevalence of hypocalcemia in the development set (9.7 %) compared to 
the internal/external validation sets (18.2 %/17.2 %). A modest corre
lation was seen in the Pearson correlation coefficients of 0.23/0.18 in 
the internal/external validation sets. 

Although the absolute value of ECG-aCa might not be accurate 
enough to be a surrogate indicator of actual aCa, we still explored the 
diagnostic value of ECG-aCa in severe-to-mild dyscalcemia (Fig. 2B). 
Satisfactory AUCs of 0.9219 and 0.8948 were found to detect severe 
hypercalcemia and hypocalcemia in the internal validation set and 
external validation still found reliability (AUC = 0.8447/0.7723 for 
severe hyper/hypocalcemia) in a heterogeneous population. These high 
AUCs corresponded to sensitivities of 84.6 %/60.0 % for severe hyper
calcemia and 75.0 %/63.0 % for severe hypocalcemia in the internal/ 
external validation sets, respectively, and specificities of 95.2 %/90.5 % 
for severe hypercalcemia and 79.7 %/81.5 % for severe hypocalcemia. 
However, the values of AUCs were significantly diminished for detecting 
moderate (0.8031/0.7687) to mild (0.7285/0.6860) hypercalcemia and 
moderate (0.7837/0.7723) to mild (0.5949/0.5672) hypocalcemia. 
Although the ECG-aCa had very high negative predictive values (NPVs) 
of ≥ 99.9 % for severe hypercalcemia and hypocalcemia, the relatively 
low positive predictive values (PPVs) of 0.7–2.0 % were due to low 
prevalence, which might require further prognostic analysis in these 
false positive cases. 

3.3. The components of ECG-aCa 

Fig. 3A shows the relationship between known ECG changes and 
ECG-aCa. DLM identified ECG-hypercalcemia was associated with 
shorter QT interval, prolonged PR interval, higher T wave axis, lower RS 
wave axis, prolonged QRS duration, increased heart rate, and higher 
prevalence of left ventricular hypertrophy compared with ECG-normal 
cases. Conversely, DLM identified ECG-hypocalcemia was associated 
with prolonged QT interval, shorter PR interval, smaller T wave axis, 

Table 1 
Baseline characteristics.   

Development 
set 

Tuning 
set 

Internal 
validation 
set 

External 
validation 
set 

aCa group     
aCa ≤ 6.5 114(0.1 %) 47(0.3 %) 20(0.2 %) 27(0.3 %) 
6.5 < aCa ≤

7.5 
536(0.6 %) 126(0.8 

%) 
68(0.6 %) 77(0.9 %) 

7.5 < aCa ≤
8.5 

7766(9.0 %) 1664 
(10.7 %) 

1937(17.4 %) 1344(16.0 %) 

8.5 < aCa <
10.5 

76969(88.7 %) 13403 
(85.9 %) 

8922(80.3 %) 6749(80.3 %) 

10.5 ≤ aCa <
11.5 

955(1.1 %) 275(1.8 
%) 

123(1.1 %) 143(1.7 %) 

11.5 ≤ aCa <
12.5 

199(0.2 %) 44(0.3 %) 22(0.2 %) 41(0.5 %) 

12.5 ≤ aCa 192(0.2 %) 52(0.3 %) 13(0.1 %) 20(0.2 %) 
Demography     
Sex (male) 50676(58.4 %) 8651 

(55.4 %) 
6410(57.7 %) 4532(53.9 %) 

Age (years) 60.8 ± 18.4 68.9 ±
16.4 

55.1 ± 18.3 69.5 ± 17.2 

BMI (kg/m2) 24.1 ± 4.2 23.9 ±
4.3 

24.3 ± 4.0 24.1 ± 4.2 

Disease 
history     

DM 18569(21.4 %) 6121 
(39.2 %) 

2202(19.8 %) 3088(36.8 %) 

HTN 26101(30.1 %) 8911 
(57.1 %) 

3505(31.6 %) 4810(57.3 %) 

HLP 20676(23.8 %) 7707 
(49.4 %) 

2133(19.2 %) 3142(37.4 %) 

CKD 21607(24.9 %) 6948 
(44.5 %) 

3318(29.9 %) 3748(44.6 %) 

AMI 4193(4.8 %) 1461(9.4 
%) 

264(2.4 %) 285(3.4 %) 

STK 13245(15.3 %) 4138 
(26.5 %) 

1405(12.7 %) 2236(26.6 %) 

CAD 15302(17.6 %) 5520 
(35.4 %) 

2003(18.0 %) 2545(30.3 %) 

HF 8188(9.4 %) 3360 
(21.5 %) 

950(8.6 %) 1410(16.8 %) 

Afib 3958(4.6 %) 1749 
(11.2 %) 

502(4.5 %) 709(8.4 %) 

COPD 9893(11.4 %) 3776 
(24.2 %) 

1620(14.6 %) 2406(28.6 %) 

Laboratory 
data     

WBC (103/ul) 8.9 ± 7.4 10.0 ±
5.4 

7.7 ± 4.6 9.8 ± 6.7 

PLT (103/ul) 231.6 ± 90.8 219.6 ±
93.7 

231.1 ± 74.6 213.7 ± 88.9 

Hb (gm/dL) 12.7 ± 2.6 11.8 ±
2.6 

13.3 ± 2.4 12.3 ± 2.6 

Blood pH 7.4 ± 0.1 7.4 ± 0.1 7.4 ± 0.1 7.4 ± 0.1 
HCO3 (mmol/ 

L) 
23.2 ± 5.5 23.7 ±

5.0 
24.1 ± 4.2 24.0 ± 4.6 

Na+ (mmol/L) 137.5 ± 5.4 136.3 ±
5.9 

139.0 ± 5.0 136.1 ± 5.9 

K+ (mmol/L) 4.0 ± 0.7 4.0 ± 0.7 3.9 ± 0.5 4.0 ± 0.6 
Cl- (mmol/L) 103.8 ± 5.6 103.0 ±

6.6 
104.1 ± 4.7 103.4 ± 6.1 

tCa++ (mg/ 
dL) 

8.8 ± 0.8 8.6 ± 0.8 8.9 ± 0.7 8.5 ± 0.8 

Mg++ (mg/dL) 2.1 ± 0.4 2.1 ± 0.4 2.1 ± 0.3 2.0 ± 0.3 
IP (mg/dL) 3.6 ± 1.2 3.5 ± 1.3 4.1 ± 1.9 3.4 ± 1.2 
iPTH (pg/mL) 261.9 ± 407.7 122.8 ±

235.7 
75.5 ± 156.8 96.0 ± 182.8 

GLU (gm/dL) 154.6 ± 100.2 165.0 ±
108.1 

126.1 ± 83.7 158.9 ±
103.4 

AST (U/L) 40.0 ± 141.3 46.1 ±
153.5 

29.2 ± 76.8 39.2 ± 126.3 

ALT (U/L) 35.8 ± 123.6 36.5 ±
128.6 

27.6 ± 58.4 32.5 ± 93.7 

BUN (mg/dL) 24.1 ± 24.0 32.4 ±
30.1 

19.9 ± 20.2 26.8 ± 25.7  

Table 1 (continued )  

Development 
set 

Tuning 
set 

Internal 
validation 
set 

External 
validation 
set 

Cr (mg/dL) 1.5 ± 2.0 2.2 ± 2.8 1.3 ± 1.8 1.7 ± 2.1 
Alb (g/dL) 3.7 ± 0.7 3.4 ± 0.6 4.0 ± 0.7 3.5 ± 0.6 
CRP (mg/L) 6.2 ± 7.9 5.2 ± 7.1 2.8 ± 5.3 5.4 ± 7.2 
pBNP (pg/mL) 6046.5 ±

10159.3 
6035.7 ±
10515.8 

2516.7 ±
6592.4 

3891.7 ±
8028.6 

D-dimer (ng/ 
mL) 

3586.3 ±
6223.9 

2966.9 ±
5290.5 

1897.8 ±
4309.1 

2664.1 ±
5046.1 

TnI (ng/mL) 1438.4 ±
7268.6 

1128.2 ±
7144.9 

285.2 ±
2746.2 

393.1 ±
3524.5 

CK (U/L) 351.0 ±
1371.8 

259.1 ±
988.2 

170.8 ±
722.9 

202.2 ±
784.8 

Abbreviations: aCa, albumin-adjusted calcium; BMI, body mass index; DM, 
diabetes mellitus; HTN, hypertension; HLP, hyperlipidemia; CKD, chronic kid
ney disease; AMI, acute myocardial infraction; STK, stroke; CAD, coronary artery 
disease; HF, heart failure; Afib, atrial fibrillation; COPD, chronic obstructive 
pulmonary disease; WBC, white blood cell count; PLT, platelet; Hb: hemoglobin; 
HCO3, bicarbonate; Na+, sodium; K+, potassium; Cl-, chloride; tCa++, total 
calcium; Mg++, magnesium; IP, inorganic phosphorus; iPTH, intact parathyroid 
hormone; GLU, glucose; AST, aspartate aminotransferase; ALT, alanine amino
transferase; BUN, blood urea nitrogen; Cr, Creatinine; Alb, albumin; CRP, C- 
reactive protein; pBNP, NT-pro-B type natriuretic peptide; TnI, troponin I; CK, 
creatine kinase. 
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Fig. 2. Accuracy of albumin-adjusted calcium (ECG-aCa). A. Scatter plots of predicted ECG-aCa compared to the actual aCa (Lab-aCa). The x-axis indicates the 
actual aCa and the y-axis presents the ECG-aCa. Red points represent the highest density, followed by yellow, green light blue, and dark blue. We presented the mean 
difference (Diff, Lab-aCa minus ECG-aCa), Pearson correlation coefficients (r), and mean absolute errors (MAE) to demonstrate the accuracy of DLM. The black lines 
with 95 % conference intervals are fitted via simple linear regression. B. The ROC curve of DLM predictions based on ECG to detect mild to severe dyscalcemia. Mild, 
moderate, and severe dyscalcemia were defined as an actual aCa (Lab-aCa) of ≥ 10.5, ≥11.5, and ≥ 12.5 for hypercalcemia and ≤ 8.5, ≤7.5, and ≤ 6.5 for hy
pocalcemia, respectively. The operating point was selected based on the maximum of Yunden’s index in the tuning set and presented as a circle and the area under 
ROC curve (AUC), sensitivity (Sens.), specificity (Spec.), positive predictive value (PPV), and negative predictive value (NPV) were calculated based on it. 
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higher RS wave axis, prolonged QRS duration, and slight increased heart 
rate compared with ECG-normal cases. However, the explainable vari
ation by these known ECG features for DLM-based ECG-aCa were only 
17.93 % and 10.96 % in internal and external validation sets, respec
tively, which implies the presence of other features in the ECG extracted 
by the DLM. Patients with ECG-hypercalcemia (ECG-aCa ≥ 10.5) 
exhibited significantly greater age, predilection for HTN, CKD, STK, 
CAD, DM, higher CRP, and lower serum sodium (Na) than patients with 
normal ECG-aCa and ECG-hypocalcemia, which were consistent in both 
internal and external validation sets (Fig. 3B). The patient characteris
tics of ECG-hypocalcemia patients were closer to those in the normal 
ECG-aCa group. These results showed that patients with ECG- 
hypercalcemia were more likely to have complex medical illness than 
those with ECG-hypocalcemia and normocalcemia. 

3.4. All-cause mortality and the risk of developing new-onset AMI and HF 

All-cause mortality and the development of two major cardiovascu
lar events in patients with normal serum aCa but abnormal ECG-aCa 
(false positive identifications by DLM) are shown in Fig. 4. The cumu
lative incidence rates at 2/4/6 years for all-cause mortality, new-onset 
AMI, and new-onset HF were 10.5 %/11.9 %/14.1 %, 2.9 %/4.6 
%/5.4 %, and 5.7 %/7.1 %/9.8 % in the ECG-hypercalcemia (false 
positive) group with corresponding significant HRs (95 % CI) of 2.05 
(1.55–2.70), 2.88 (1.72–4.83), and 2.02 (1.38–2.97) compared to the 
ECG-normal (true negative) group in the internal validation set, 
respectively. The C-index analyses also show the significant prognostic 
value on all-cause mortality (0.582, 95 % CI: 0.544–0.610), new-onset 
AMI (0.595, 95 % CI: 0.534–0.656), and new-onset HF (0.591, 95 % 

Fig. 3. The components of albumin-adjusted calcium (ECG-aCa). A. Corrected QT Interval and Relative Importance. The relative importance is based on the 
information gain of the XGB model and the R-square (R-sq) is the coefficient of determination to use selected ECG features for predicting ECG-aCa. B. Selected 
patients’ characteristics in ECG-hypocalcemia, ECG-normal, and ECG-hypercalcemia. The AI-ECG predictions were classified as ECG-hypocalcemia (ECG-aCa ≤ 8.5), 
ECG-normal (8.5 < ECG-aCa < 10.5), and ECG-hypercalcemia (ECG-aCa ≥ 10.5). The analyses are conducted both in internal and external validation sets. (*: p <
0.05; **: p < 0.01; ***: p < 0.001). 
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CI: 0.552–0.630). In the external analysis, significantly higher risk of 
ECG-hypercalcemia on new-onset AMI (HR: 1.65, 95 % CI: 1.04–2.61), 
and new-onset HF (HR: 1.83, 95 % CI: 1.43–2.36) were still observed. 
Despite less significance of ECG-hypercalcemia on all-cause mortality, 
the C-index for continuous ECG-aCa was still significant for all-cause 
mortality (0.547, 95 % CI: 0.524–0.570). Similar analyses were also 
significant on new-onset AMI (C-index: 0.577, 95 % CI: 0.521–0.634) 
and new-onset HF (C-index: 0.569, 95 % CI: 0.538–0.599) in the 
external validation set. These results emphasize the relevance of ECG- 
aCa on prognosis. 

4. Discussion 

In this retrospective cohort study, we first built a DLM with segre
gated development, training, and tuning data of annotated aCa and ECG 
for dyscalcemia detection, then validated its performance in two inde
pendent hospitals, and further evaluated the prognostic value of ECG- 
dyscalcemia. AI-enabled ECG analysis achieved satisfactory diagnostic 
accuracy to detect severe hypercalcemia and hypocalcemia in both 

internal/external validation sets. For previvor prediction, patients with 
ECG-hypercalcemia but initially normal serum aCa had a higher risk of 
developing all-cause mortality, new-onset AMI, and new-onset HF in 
both internal and external validation sets. 

Since the symptoms and signs of dyscalcemia may be subtle and 
vague, the awareness and recognition of dyscalcemia is still low [29]. It 
has been reported that many patients with final dyscalcemia had already 
received inappropriate treatment due to delayed diagnosis [30,31]. 
Furthermore, serum Ca concentration is not routinely measured in 
clinical practice worldwide; thus, the early detection of dyscalcemia 
remains challenging. A simple, convenient method of detecting dyscal
cemia would be clinically useful. ECG is a noninvasive bedside tool 
which can detect the electrical signature of the heart’s activity associ
ated with dyscalcemia. Using a large aCa-annotated ECG driven DLM, 
we have successfully developed an AI-enabled ECG platform to identify 
dyscalcemia. The diagnostic accuracy with AUCs of 0.9219/0.8447 and 
0.8948/0.7723 to detect severe hypercalcemia and hypocalcemia in 
internal and external validation were convincing. 

Patients with symptomatic hypocalcemia such as carpopedal spasm, 

Fig. 4. Long-term incidence of developing cardiovascular outcomes in patients with an initially normal albumin-adjusted calcium (8.5 < aCa < 10.5) 
stratified by ECG-aCa. The AI-ECG predictions were classified as ECG-hypocalcemia (ECG-aCa ≤ 8.5), ECG-normal (8.5 < ECG-aCa < 10.5), and ECG-hypercalcemia 
(ECG-aCa ≥ 10.5). The C-index is calculated based on the continuous value of ECG-aCa with smoothing splines using the pspline basis function. The analyses are 
conducted both in internal and external validation sets. The table shows the at-risk population and cumulative risk for the given time intervals in each risk 
stratification. 
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tetany, seizures, heart failure, and abnormal ECG signs including QT 
interval prolongation need emergent intravenous calcium supplemen
tation to prevent the devastating complications. Similarly, there is an 
urgent need to rapidly lower serum Ca concentration in patients with 
symptomatic hypercalcemia, including encephalopathy and abnormal 
hypercalcemia-related ECG findings (shortened QT interval, Osborn J- 
wave, widespread T-wave inversion, and Torsades de pointes). Of note, 
both severe hypocalcemia and hypercalcemia may decompensate from a 
chronic to acute state with critical dyscalcemia-induced cardiac events. 
Our AI-ECG aCa analysis also demonstrated a strong correlation be
tween prolonged QT interval and ECG-hypocalcemia as well as short
ened QT interval and ECG-hypercalcemia, which partially explains how 
DLM recognizes severe hypocalcemia and hypercalcemia with high ac
curacy. However, both mild hypocalcemia and hypercalcemia were 
difficult to diagnose by AI-ECG due to less changes to the ECG. This 
shortcoming of AI-ECG detection for mild dyscalcemia should be 
acknowledged, highlighting the need for more advanced AI-ECG 
training and development for early detection of mild dyscalcemia. 

We also investigated the prognostic value of ECG-dyscalcemia, called 
previvors [19], since the ECG reflects the heart and systemic physiologic 
condition. We found that patients with ECG-hypercalcemia were more 
likely to have complex medical illnesses than those with ECG- 
hypocalcemia and normocalcemia. Patients with ECG-hypercalcemia 
also had higher risk of all-cause mortality and cardiovascular events. 
The prognostic information encapsulated by ECG-aCa was independent 
of the actual aCa, thus AI-enabled ECG identifies previvors of compli
cations based on Ca, similar to predictions based on left ventricular 
dysfunction [27], age [32], and potassium [20]. Importantly, we also 
demonstrated that ECG-aCa was extensively associated with known ECG 
changes, as well as many unknown and higher order ECG abnormalities 
identified by the DLM. Unlike our group’s recent findings that patients 
with ECG-hypokalemia carried a higher risk of mortality [20], we did 
not find a similar mortality risk with ECG-hypocalcemia. The reason 
may be related to lower accuracy of detecting mild hypocalcemia (AUC 
= 0.567–0.595). 

Comparing our work with a previous study using DLM-enabled ECG 
with demographic information to detect dyscalcemia [33], there are 
some crucial differences to note. First, we used ECGs annotated with 
aCa, which is a better indicator of physiologic Ca since total calcium is 
affected by serum protein and albumin binding to free calcium. Second, 
the definition and gradation of dyscalcemia were different. In contrast to 
the previous study which only defined hypocalcemia as <8.5 mg/dl and 
hypercalcemia as greater than 10.5 mg/dl (three categories), our study 
further graded dyscalcemia into mild, moderate, and severe hypocal
cemia and hypercalcemia (seven categories). Third, our AI-ECG Ca 
offered continuous quantitative output like laboratory Ca data despite 
similar AUCs (0.905 and 0.901) in both studies [33]. Fourth, our study 
demonstrated similar AUCs of 0.9219/0.8447 and 0.8948/0.7723 for 
detecting severe hypercalcemia and hypocalcemia without demographic 
information, respectively. Finally, the most distinguishing aspect of our 
study was the clinical outcomes follow up. 

Some limitations of this study should be mentioned. First, we used 
albumin adjustment [34] to standardize biologically active Ca. This 
correction may be inappropriate in patients with CKD or end-stage renal 
disease and hyperbilirubinemia may present challenges to the bromoc
resol purple (BCP) method for measuring serum albumin [35], leading 
to mismatch between serum and biologically-active ECG data. Future 
studies directly annotating ECGs with ionized Ca are warranted. Second, 
the retrospective design only annotated the ECGs by the laboratory re
sults closest in time. A prospective study should be conducted to validate 
the DLM’s performance in a target population. Third, we acknowledged 
that low prevalence of hypercalcemia (~2 %) and low positive predic
tive value (4.5 %) of ECG-aCa for hypercalcemia prediction may limit 
clinical application of this algorithm. However, we still found that ECG- 
aCa hypercalcemia with normal serum aCa (false positive) had a higher 
risk of poor outcome. Fourth, the DLM design currently precludes full 

interpretability. Our study showed<20 % of the predictions could be 
explained by known ECG features and full interpretability will be a focus 
of future work. Finally, POC-Ca+ has been used to detect dyscalcemia; 
we did not compare the accuracy of these two methods to detect severe 
dyscalcemia. 

5. Conclusion 

In conclusion, severe dyscalcemia are potentially life-threatening 
emergencies requiring prompt recognition and management. Our AI- 
enabled ECG analysis provides a quantitative indicator, ECG-aCa, for 
severe dyscalcemia and prognostic prediction for decision support. Like 
the guideline recommending prompt ECG in the management of 
hyperkalemia [36], we also recommend prompt ECG in the management 
of hypercalcemia. Since ECG is also extensively used when considering 
many CV diagnoses, our AI-enabled ECG platform may actively detect 
potential patients with severe dyscalcemia in unexpected situations. A 
larger prospective cohort study should be conducted to further validate 
our findings. 
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